Gene regulatory network inference from perturbed time-series expression data via ordered dynamical expansion of non-steady state actors.
نویسندگان
چکیده
The reconstruction of gene regulatory networks from gene expression data has been the subject of intense research activity. A variety of models and methods have been developed to address different aspects of this important problem. However, these techniques are narrowly focused on particular biological and experimental platforms, and require experimental data that are typically unavailable and difficult to ascertain. The more recent availability of higher-throughput sequencing platforms, combined with more precise modes of genetic perturbation, presents an opportunity to formulate more robust and comprehensive approaches to gene network inference. Here, we propose a step-wise framework for identifying gene-gene regulatory interactions that expand from a known point of genetic or chemical perturbation using time series gene expression data. This novel approach sequentially identifies non-steady state genes post-perturbation and incorporates them into a growing series of low-complexity optimization problems. The governing ordinary differential equations of this model are rooted in the biophysics of stochastic molecular events that underlie gene regulation, delineating roles for both protein and RNA-mediated gene regulation. We show the successful application of our core algorithms for network inference using simulated and real datasets.
منابع مشابه
Learning a nonlinear dynamical system model of gene regulation: A perturbed steady-state approach
Biological structure and function depend on complex regulatory interactions between many genes. A wealth of gene expression data is available from high-throughput genome-wide measurement technologies, but effective gene regulatory network inference methods are still needed. Model-based methods founded on quantitative descriptions of gene regulation are among the most promising, but many such me...
متن کاملIntegration of Steady-State and Temporal Gene Expression Data for the Inference of Gene Regulatory Networks
We develop a new regression algorithm, cMIKANA, for inference of gene regulatory networks from combinations of steady-state and time-series gene expression data. Using simulated gene expression datasets to assess the accuracy of reconstructing gene regulatory networks, we show that steady-state and time-series data sets can successfully be combined to identify gene regulatory interactions using...
متن کاملCombining tree-based and dynamical systems for the inference of gene regulatory networks
MOTIVATION Reconstructing the topology of gene regulatory networks (GRNs) from time series of gene expression data remains an important open problem in computational systems biology. Existing GRN inference algorithms face one of two limitations: model-free methods are scalable but suffer from a lack of interpretability and cannot in general be used for out of sample predictions. On the other ha...
متن کاملInference of Boolean Networks Using Sensitivity Regularization
The inference of genetic regulatory networks from global measurements of gene expressions is an important problem in computational biology. Recent studies suggest that such dynamical molecular systems are poised at a critical phase transition between an ordered and a disordered phase, affording the ability to balance stability and adaptability while coordinating complex macroscopic behavior. We...
متن کاملInferring Gene Regulatory Network Structure
Inferring the network structure of gene regulatory networks is one of the most important problems in contemporary bioinformatics. We analyze different methodologies for inferring small to very large sized gene networks. We use the datasets of DREAM 3 in-silico network challenge that is provided online [1]. The challenge involves inferring primarily the network structure from steady state gene e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE/ACM transactions on computational biology and bioinformatics
دوره شماره
صفحات -
تاریخ انتشار 2015